Меню

Как настроить модель для печати

Как создать модель для печати на 3D-принтере: 30 видеоуроков

Печать на 3D-принтере — процесс достаточно простой, если соблюдать правила работы с разными типами материалов и с конкретными моделями принтеров, но — со своими тонкостями. Чтобы избежать непредвиденных затруднений в процессе печати, следует тщательно проработать 3D-модель до загрузки файла на 3D-принтер.

Читайте нашу новую статью, чтобы узнать — как создать с нуля 3D-модель для 3D-принтера, и каких ошибок следует избегать.

Содержание

Какие файлы необходимы для 3D-принтера?

Большинство фотополимерных 3D-принтеров распознают STL-файлы. STL — это формат файла, изначально разработанный компанией 3D Systems для печати предметов методом стереолитографии. STL-файлы описывают только геометрию поверхности трехмерного объекта без какого-либо представления о цвете, текстуре или других атрибутах модели. Слайсеры различных моделей 3D-принтеров поддерживают файлы распространенных форматов OBJ, 3DS, а также проприетарные (FORM, PLG).

Создать STL-файл трехмерной модели можно в CAD-программе или при помощи 3D-сканеров RangeVision, ручных 3D-сканеров Einscan и т.д. Не следует путать файлы STL и Gcode. Файлы STL содержат 3D-объект, а Gcode-файл — это составленный слайсером код управления 3D-принтером. Многие производители 3D-принтеров предоставляют тестовый файл в формате .gcode, чтобы пользователь мог сразу испытать новое оборудование. Но как поступить, если необходимо создать проект для 3D-принтера с нуля? Рассмотрим популярные программы, которые дают возможность разработать сложные предметы для разных методов 3D-печати.

Программы для 3D-моделирования

Готовить модели для 3D-печати можно в различных программах, предназначенных для работы с трехмерными объектами. Хотя принцип моделирования объектов во всех программах схожий, существуют различия в подходе к решению задач. Можно использовать профессиональные приложения для отрисовки 3D-рендеров (The Brush, Autodesk Maya и 3ds Max и другие), приложения для инженеров (Fusion 360, Autodesk Solidworks Blender, Компас 3D), а также существуют программы, которые оптимизированы для работы с небольшими 3D-объектами (Sketchup). Выбор ПО зависит от привычек пользователя, поскольку от особенностей интерфейса зависит удобство использования программы. Рассмотрим часто встречающиеся примеры ПО для 3D-моделирования.

Видеоуроки по Fusion 360

Fusion 360 — это профессиональная многофункциональная программа, предназначенная в том числе для создания 3D-моделей для 3D-принтера. Несмотря на обширные возможности, интерфейс программы достаточно понятный. Более того, многие функции меню имеют визуальные подсказки, по которым легко ориентироваться. Программа Fusion 360 позволяет сразу конвертировать разработанную для 3D-печати модель в формат .STL, то есть получить готовый файл для печати. Одно из достоинств этого ПО — наличие условно-бесплатной версии.

На следующем видео показано, как в программе создать модель, на примере опоры-кронштейна для лампы:

В конце следующего длинного видеоролика показано, как на основе чертежа создать 3D-модель станины:

Пример того, как составить 3D-модель рукоятки ножа, используя обычную фотографию, можно увидеть в ролике:

Достаточно сложный пример: проектирование кулона в виде Ленты Мёбиуса, процесс пошагово показан в 14-минутном видео:

Автор канала Make Anything опубликовал получасовой ролик о создании в Fusion 360 квадратной тарелки и высокой вазы. Бонусом автор прикрепил в описании к видео ссылку на готовые stl-файлы этих предметов.

В следующем видео показано, как в Fusion 360 спроектировать составную деталь с шарниром, на примере зажима:

Adafruit Industries сделали 18-минутное видео, в котором показали, как в Fusion 360 наносить объемный рисунок на боковые стенки предметов. В примерах показаны как повторяющиеся симметричные паттерны, так и сложные асимметричные узоры:

Видеоуроки по SolidWorks

Программа SolidWorks имеет русифицированный интерфейс, что может быть удобно, в частности, при создании обучающих курсов по 3D-печати в школах. Меню программы не перегружено пунктами. Разобраться в приложении достаточно просто даже начинающему специалисту.

В следующем примере показано, как спроектировать в SolidWorks переходник для колков гитары:

На видео ниже показано, как спроектировать в SolidWorks изогнутую трубу с фланцами:

Моделирование опорной детали для различных инструментов — тема следующего ролика:

Чтобы смоделировать болт с правильной аккуратной резьбой, необходимо знать несколько трюков в SolidWorks. На канале My Digi Pro объяснили, как выполнить работу быстро:

Если вам необходимо строить объекты сложной формы, вам поможет разобраться в программе большой получасовой видеоурок:

Создайте шестеренку сложной формы. Сделать это вам поможет короткий видеоролик:

Видеоуроки по Компас 3D

Компас 3D — это профессиональная программа для создания 3D-объектов любой сложности. Вероятно, из-за ориентации на профессиональное CAD-моделирование, интерфейс программы получился довольно сложным: с большим количеством пунктов меню и обширными возможностями для настройки.

Если вы только начинаете осваивать Компас 3D, потренируйтесь на моделировании обычного ящичка:

Модель гайки представлена на следующем видео:

Порядок моделирования зубчатого колеса с использованием чертежа:

Подгонка и сборка шарнирного соединения на 3D-модели показана в следующем видео:

Пример сравнительно сложной детали, винта кулера, показан в этом ролике:

Видеоуроки по Blender

Blender — профессиональная программа, которая предназначена для создания сложных трехмерных объектов, в том числе анимированных. Интерфейс программы может показаться достаточно сложным для новичка, но в Интернете можно найти достаточно обучающих материалов по созданию 3D-моделей с ее помощью. Интерфейс программы русифицирован.

Читайте также:  Libreelec raspberry pi 3 как настроить iptv

Начать освоение Blender можно с моделирования держателя полки (для фиксации на стене):

Поскольку Blender — это полноценный графический редактор, в программе можно создавать сложные арт-объекты. В туториале показано, как за час создать оригинальную модель, у которой будет фактурная поверхность и множество выразительных деталей:

Еще один арт-объект, но на этот раз — абстрактная модель ламы. Отрисовка такой модели занимает существенно меньше времени:

Головной убор для косплея:

Подготовка файла Blender для 3D-печати, пример — серьги-секиры:

Создание 3D-модели осевого держателя на основе чертежа:

Крючок с креплением для стенда с инструментами:

Создание модели сундучка с нуля:

Конвертация чертежей онлайн

В последние годы на рынке появляются и альтернативные методы 3D-моделирования. Например, немецкая компания CAD Schroer разработала комплекс из компьютерной программы MEDUSA4 Personal и онлайн-платформы CSG eSERVICES, которые позволяют превратить чертеж в трехмерный объект с сохранением в STL-файл. В десктопном ПО MEDUSA4 Personal пользователь открывает файл с двухмерным чертежом и запускает через пункт меню Model Reconstruct моделирование 3D-объекта. Сохраненный трехмерный объект в MOD-файле необходимо конвертировать онлайн в STL-файл. Единственным недостатком сервиса является оплата за каждую конверсию поштучно.

Ошибки, которые необходимо предотвратить при 3D-моделировании

Начинающие пользователи обычно приобретают FDM- или SLA/LCD-принтеры начального уровня. В FDM для печати используется пластиковый филамент. В SLA и LCD, фотополимерных технологиях печати — жидкая фотополимерная смола. FDM-принтеры доступнее, а фотополимерные принтеры позволяют создавать гораздо более сложные и детализированные объекты. Рассмотрим самые распространенные ошибки, совершаемые пользователями при подготовке модели к печати.

Добавление поддержки

При создании сложного объекта следует учесть, что участки модели, которые “висят в воздухе”, не могут быть напечатаны без создания поддержек. Поддержки — печатающиеся вместе с моделью опорные конструкции, которые удаляются после завершения печати. Во многих программах поддержки можно создавать автоматически и изменять вручную.

При использовании FDM-принтера с двумя экструдерами поддержки можно печатать из растворимого материала, например — поддержки из HIPS с деталью из ABS, поддержки из PVA с деталью из PLA. Такие поддержки легко удаляются с помощью растворителя, без риска повредить модель в процессе ее очистки от них.

Толщина стенок, диаметр отверстий

При создании легкого ажурного объекта пользователь может ошибиться и создать слишком маленькие отверстия, либо слишком тонкие стенки изделия, которые принтер не сможет воспроизвести корректно. Данная ошибка в большей степени характерна для FDM-моделей, однако и при работе с фотополимерными необходимо учитывать рекомендованные производителем параметры стенок и отверстий.
Мы рекомендуем моделировать стенки объектов с толщиной не менее двух диаметров сопла, для FDM-принтера, а для фотополимерных — не менее полмиллиметра.

Итоги

Как видно из приведенных примеров, процесс моделирования 3D-детали для печати на 3D-принтере легко освоить без прохождения длительных дорогостоящих курсов. В современной информационной среде достаточное количество бесплатных и, что важно — весьма содержательных и простых для понимания обучающих видео. Также в самообразовании может помочь чтение тематических форумов, участие в сообществах 3D-печатников, где принято помогать новичкам и объяснять неочевидные и сложные нюансы.

Купите 3D-принтер в Top 3D Shop и присоединяйтесь к сообществу мейкеров-3D-печатников — людей, самостоятельно создающих полезные и интересные вещи.

Источник

iОнлайн

Дневник 3Д печатника. Подбор параметров печати. Калибровка потока пластика на примере слайсера Cura

Всем привет. В одной из своих прошлых статей “Дневник 3Д печатника. Калибровка подачи пластика на экструдере MK8 3д принтера Anycubic 4max” я рассказывал как осуществить калибровку подачи пластика на экструдере. Но это только первый шаг, по достижению хороших и отличных результатов 3Д печати. В этой статье я расскажу, каким образом необходимо рассчитывать и указывать в профиле Cura поток пластика. Разбираться буду, естественно на примере 3Д принтера Anycubic 4Max. Однако, способ универсальный и работает на всех моделях 3Д принтеров. Так что 4Max просто оказался в нужное время в нужном месте. Так что не будем затягивать, а сразу перейдем к сути дела.

И так. Для того чтобы осуществить калибровку (правильный подбор потока) пластика нам необходимо следующее:

Пластик, поток которого мы будем калибровать.

Измерительный штангенциркуль (резервная ссылка). Нужен такой, который меряет до сотых долей миллиметра.

3Д принтер для которого будет производиться калибровка

Программа слайсер. В моем случае – Cura Версии 3.6.0

Калибровку буду производить на примере красного PETG пластика производства компании ABSMaker. Сразу предупреждаю, все полученные результаты верны только для моей катушки пластика, моего 3Д принтера и установленного в данным момент сопла. У вас результат может отличаться. Для калибровки потока воспользуюсь методикой, предложенной Дмитрием Соркиным. Я не изобретаю велосипед, а лишь рассказываю, как я на практике применил полученные знания.

Читайте также:  Как настроить проводки по заработной плате в 1с

Для чего нужна такая калибровка? Для того чтобы слайсер мог верно рассчитать необходимое количество пластика, которое нужно выдавить. Если пластика выдавливается мало, то получается недоэкструзия, пропуски и дырки в детали, если пластика выдавливается много, то мы получаем сопли и прыщи. В любом случае страдает качество детали.

Почему не достаточно метода, описанного в предыдущей статье? Дело в том, что в прошлой статье мы учили по команде выдавливать экструдер столько пластика сколько необходимо. Т.Е. решали аппаратную проблему подачи пластика. Но дело в том, что 3Д принтер – устройство подневольное и действует на основе командного файла, который готовится в слайсере. Априори, слайсер полагает, что экструдер выдавливает нужное количество пластика. Поэтому сейчас мы будет учить слайсер правильно рассчитывать количество пластика, чтобы сформировать правильные команды для экструдера. Увы. Если работы, описанные в первой статье, выполняются очень редко, то работы описанные в этой статье необходимо выполнять для каждого конкретного пластика (возможно и для каждой катушки) и для каждого конкретного сопла. Сменил сопло – калибруй поток. Купил новую катушку – калибруй поток. Вот как-то так.

Все эти работы преследуют собой только одну цель – получить максимальное качество распечатанной детали.

И так, приступим. Я полагаю, что с подбором оптимальной температурой печати и с температурой стола вы разобрались. Все печатается и липнет.

Для решения поставленной задачи вам необходимо распечатать калибровочный куб. Да не простой куб. Специально для этих целей я спроектировал куб 25х25 мм. (Скачать набор тестовых моделей). Из набора нам понадобится STL файл с именем KUB_FLOW.STL. И так. Открываем Cura и создаем новый профиль.

Температуру стола и пластика устанавливаем те, которые вы используете для того пластика, под который собираетесь калибровать поток. Остальные настройки выставите, пожалуйста так, как показано на скринах:

Источник



Настройки CURA.Программы для подготовки 3д печати.

Cura предназначена для перевода 3D модели в G-код и печати на 3D принтере. Источник

Cura предназначена для перевода 3D модели в G-код и печати на 3D принтере.

Настройки для 3D принтера Mendel90 и подобных

Первый запуск Cura

Выбираем свой 3D принтер

Устанавливаем габариты области печати

Настройка параметров печати

Вкладка «Основные» настройки


Качество печати

1 – Толщина слоя печати. Зависит от диаметра сопла. Хорошее качество – 1/2 диаметра сопла. Лучшее качество – 1/4 диаметра сопла.

2 – Толщина стенок. Должна быть кратна диаметру сопла. Одинарная стенка – хуже внешний вид, но лучше прочность, если заполнение 100%.

3 – Откат (Ретракт). Всасывание расплава пластика, при переходе на другой островок печати.

Заполнение

4 – Толщина верха и низа детали. Толщина верха влияет если низкий процент заполнения детали и нить сильно провисает. Могут остаться рваные отверстия и торчать застывшие нити пластика.

5 – Процент заполнения детали. Плотность решётки внутри детали. 0% — будет полая деталь. Нужна для прочности и поддержки верхних слоёв.

Скорость и температура

6 – Скорость печати. Учитывается, если не заданы детальные настройки на вкладке «Продвинутые».

7 – Температура сопла. Зависит от типа пластика. ABS 210-270C, PLA 180-210C.

8 – Температура стола. ABS 105-115C. Для PLA 70C на каптоновом скотче и 0С на синем скотче.

Поддержка

9 – Тип поддержки. Поддержка нужна для нависающих и наклонных поверхностей детали для защиты от провисания нитей:

Нет – не использовать поддержку.
От поверхности – поддержка по минимуму.
Везде – поддержка по максимуму.

10 – Тип усиления адгезии (прилипания) к столу:

Нет – ничего. Только круги вокруг детали
Кайма – увеличение площади детали для лучшего сцепления со столом и защиты от отлипания углов. Настраивается во вкладке «Продвинутые».
Подложка – решётчатая многослойная подложка под деталь. Используется для деталей с маленькой площадью соприкосновения со столом. Настраивается во вкладке «Продвинутые».

Пруток (филамент, нить)

11 – Диаметр используемого прутка. Нужно замерить штангенциркулем для точности.

12 – Процентное изменение объёма экструзии нити из сопла. Настраивается для каждой катушки пластика индивидуально. Если щели между нитями на заливке — нужно увеличить, если деталь превращается в месиво — нужно уменьшать.

Вкладка «Продвинутые» настройки

Принтер (Сопло)

1 – Диаметр отверстия сопла

Откат (Ретракт)

2 – Скорость отката прутка. На большой скорости болт экструдера может сорвать слой прутка и потерять сцепление.

3 – Длина ретракта. Если при переходе сопла на следующую часть детали из сопла вытекает нить — нужно увеличить параметр.

Качество (Первый слой)

4 – Толщина первого слоя. Зависит от кривизны стола и диаметра сопла.

5 – Ширина первого слоя в процентах. Влияет на качество адгезии. Выше – лучше. Если на первом слое щели между нитями — нужно добавлять %.

Читайте также:  Defender challenge mini le usb как настроить
Скорость (Детальная настройка скорости печати)

7 – Скорость холостого перехода, без выдавливания пластика. На холостом переходе может задевать отвердевшие торчащие нити пластика. Минимальная скорость 80 мм/с.

8 – Скорость печати первого слоя. Ниже – лучше. Рекомендуемая скорость 20 мм/с.

9 – Скорость заполнения детали. Можно больше. Обычно 60-120 мм/с.

10 — Уменьшаем скорость для гладкой верхней поверхности.

11 – Скорость печати внешнего контура. При 20 мм/с получается отличное качество поверхности.

12 – Скорость печати внутренних слоёв контура. Средняя между скоростью заполнения и скоростью печати внешнего контура. При большой скорости влияет на качество внешнего контура.

Охлаждение

13 – Минимальное время печати слоя, даёт слою время на охлаждение перед переходом к следующему слою. Если слой будет укладываться слишком быстро, 3D принтер будет снижать скорость укладки, вписываясь в указанное время. Обычно ставлю 20 сек.

14 – Включение вентилятора для охлаждения детали во время печати. Используется только для PLA – подобных пластиков. На ABS ухудшает сцепление слоёв.

Дополнительные настройки печати

Включение дополнительных настроек

Подробные настройки

Эти же настройки появляются в мини меню вкладки «Продвинутые»

Ретракт — всасывание нити пластика

3.1 — Поднимать сопло над деталью во время ретракта, мм. При перемещении над поверхностью детали, чтобы не задевать застывший пластик.

Контур (Юбка, Skirt) — выдавливание пластика вокруг детали для подготовки сопла к печати детали

10.3 — Количество колец выдавливания пластика вокруг детали.

Охлаждение детали

14.1 — На какой высоте включать охлаждение детали.

14.2 — Минимальная скорость вентилятора охлаждения.

14.3 — Максимальная скорость вентилятора.

14.4 — Ограничение минимальной скорости укладки нити.

14.5 — Отводить сопло от детали для лучшего остывания. Время после которого отводить сопло настраивается в Подробные настройки\Охлаждение\Минимальное время на слой (сек.).

Заливка

5.1 — Делать заливку верхнего слоя. Для печати пустых и открытых деталей (вазы, стаканы).

5.3 — Процент перехлёста нитей. Для лучшего сцепления нитей между ними.

Поддержки

9.1 — Структура поддержек:

Grid — решётка,
Lines — линии. Легче удаляется.

9.2 — Угол наклона поверхности, при котором начинают формироваться поддержки. Ставлю 60 градусов.

9.3 — Плотность структуры поддержек, в процентах.

9.4 — Расстояние от стенок детали до поддержек по осям XY. Чем меньше, тем труднее удалить поддержки.

9.5 — Расстояние от нижней поверхности детали до поддержек по оси Z.

Кайма (Brim) — Увеличение площади соприкосновения детали и стола

10.1 — Ширина поля, в линиях нити.

Подложка (Raft) — нужен для печати деталей с маленькой площадью касания со столом

10.2 — Настройка параметров Raft

Исправление ошибок 3D модели

15 — Автоматическая коррекция некоторых ошибок 3D модели

Дополнительные меню на вкладке «Основные» повторяют настройки из «Подробные» настройки

Дополнительная меню на вкладке «Продвинутые» повторяет настройки из «Подробных настроек»

Сохранение настроек в файл и восстановление

Манипуляции на рабочем столе

Окно рабочего стола

1 — Вид детали на рабочем столе.

2 — Загрузка файла и добавление 3D модели на рабочий стол.

3 — Запуск печати на 3D принтере или сохранение G-кода программы на SD карту или на жёсткий диск, для автономной печати с SD карты.

4 — Расчётное время печати детали.

5 — Расчётная длина прутка для этой детали.

6 — Расчётный вес детали со всеми дополнительными структурами.

7 — Варианты просмотра детали.

8 — Просмотр загруженной 3D модели детали.

9 — Послойный просмотр детали со всеми дополнительными структурами.

1 — Послойный просмотр детали со всеми дополнительными структурами.

2 — Общее количество слоёв детали.

3 — Просматриваемый слой.

4 — Внутренняя структура заполнения.

5 — Структура поддержек.

6 — Внешний вид юбки, со всеми настройками.

Поворот детали по осям

При щелчке левой кнопкой мыши по детали на рабочем столе, в левом нижнем углу появляются пиктограммы:

1 — Поворот детали по оси. Тянем левой кнопкой мыши выбранную ось.

2 — Отображается угол поворота.

3 — Сброс в исходное положение.

4 — Выравнивание нижней плоскости детали, относительно рабочего стола.

Изменение габаритных размеров детали

1 — Пиктограмма изменения габаритов.

2 — Тянем с зажатой левой кнопкой мыши, для изменения габаритов детали.

3 — Сброс изменений.

4 — Максимальные габариты.

Отражение детали в плоскостях

Перед печатью

Входим в настройки

Изменяем вид интерфейса

Интерфейс программы Cura в стиле программы Pronterface, во время печати.

Изменяем стартовый G-код

1 — Здесь мы можем поменять координаты XYZ начального выезда сопла над столом

2 — Здесь настраиваем количество выдавливаемого пластика (E). Положительное значение — выдавить, отрицательное — втянуть. Выдавливание нужно для наполнения сопла расплавом перед печатью, чтобы не было пробела в начале печати.
Этот код вставляется в начале каждой программы.

Источник