Меню

Как настроить ток покоя в усилителе мощности

Тема: Ток покоя — практика

Опции темы

Ток покоя — практика

Начитавшись теории — к практике.
Прошу советов у опытных.
Есть УМ БМ-0200 сделанный в 1991г в Люберцах.
Сделан качественно. Но схему не могу найти.
Проблема в звуке — много ВЧ — мало НЧ и совершенно холодные радиаторы.
Подозреваю загнали в глухой класс В.
Хочу увеличить Ток-Пок.
На выходе по 2 шт. КТ818-819 ГМ.
На коллекторы подается питание через предохранители.
На каждом канале по 2 предохранителя по 5А.
Вопросы
1. Измерить Напряжение постоянное на каждом предохранителе и зная сопротивление этих предохранителей найти Ток-Пок.
2. Вместо предохранителей припаять сопротивление мощное на несколько Ом
и повторить п.1.
3. Вместо предохранителя подсоединить тестер или авометр на постоянный ток
и сразу определить Ток-Пок.
Боюсь что-либо сжечь и прошу вашей консультации.

Re: Ток покоя — практика

Re: Ток покоя — практика

Данный симптом к току покоя не имеет отношения. Скорее всего подсохли электролитические конденсаторы.

Это имеет отношение к току покоя.

Обычно к эмиттерам выходных транзисторов припаяны низкоомные резисторы. Измерьте напряжение на них, дальше — по закону Ома. Ничего не сожжёте.

Re: Ток покоя — практика

Измерить падение напряжения на резисторах в эмиттерах выходных транзисторов и по закону ома узнать ток. Ток покоя в усилителе с вых. каскадом в классе АВ, в зависимости от его мощности, примерно: 20 Вт — 20 мА, 50 Вт — 50 мА, 100 Вт — 100 мА.

Re: Ток покоя — практика

Не суши парню мосх.
С каких это пор ток покоя ВК в АВ имеет такую сказочно линейную зависимость от выходной мощности?

Re: Ток покоя — практика

Спасибо всем откликнувшимся.
1. Эмиттерные резисторы. К сожалению нет схемы.
Единственная ссылка нашлась только на форуме А. Клячина. Но у него трудно зарегистрироваться.
Может кто-то из зарегистрированных поможет?
На самой плате не видно таких резисторов — большие черные с малым сопротивлением и мощные.
2. Почему нельзя или нехорошо использовать предохранители? Их сопротивление измеримо.
Оно порядка 1-2 Ома. Меряем падение напряжения на предохранителе и т.д. Это опасно?
3. Про нехватку НЧ. Все электролиты заменил — их всего 3шт в каждой плате.
В БП проверил — там 4шт по 10000мкф. Может ли там где-то стоять ФВЧ — например на входе?
Это наверно RC — цепочка? Если найду — сразу закоротить С?

Re: Ток покоя — практика

Не пойдёт.
Вместо предохранителя припаяй 1ом 1-2вт резистор. Померить тестером падение, и всё.
А нашёл переменник, которым изменяется ток?

Re: Ток покоя — практика

Лучше не надо.
ИМХО-уется мне, что дело тут совсем не в трёх конденсаторах на плате, не в БП, не в оконечнике и не в токе покоя транзисторов ВК. Хотя входную ёмкость, и ёмкость в ОС-и стоило бы ещё раз пощупать приборчиком.

Фото крупным планом «фейса» платы оконечника и её «реверс» можно увидеть?

Re: Ток покоя — практика

Без схемы и сведений о термостабилизации тока покоя можно нарваться на неприятности в виде сгоревших выходных
транзисторов и чего нибудь еще. Описанные недостатки звука (мало низких частот) напрямую не связаны с током покоя выходных транзисторов.
Холодные радиаторы это не трагедия, об этом можно думать в последнюю очередь.

Re: Ток покоя — практика

Re: Ток покоя — практика

Перед экспериментами поставить предохранители на 1А 😉 потом уже крутить, сначала без нагрузки и смотреть кроте ТП постоянку на выходе — часто на плате есть регуляторы ТП и балансировка

Re: Ток покоя — практика

Re: Ток покоя — практика

А если это Quad405 — 909

Re: Ток покоя — практика

Радиаторы не умирают — они просто холодные!

Re: Ток покоя — практика

1. Холодные радиаторы говорят про глубокий класс В. А хочется АВ.
2. igmar — уточните плиз по русски — куда совать эти прокладки. Понравились и чую в них какую-то идею.
3. Vjumajlo — понимаю про фото. Но это займет много времени — надо разбирать хотя бы один бок. Позже сделаю.

Re: Ток покоя — практика

Сделал снимки платы УМ одного канала.
Как смог подписал.

Миниатюры

Вложения

  • Forum.zip (1,76 Мб, Просмотров: 315)

Re: Ток покоя — практика

Итак, отключаем усилитель, отключаем акустику, подпаиваем последовательно с одним из предохранителей отводы изолированной проволоки, с оголенными концами, оголённые концы хорошо закручиваем на наконечники авометра (если этого не делать, то запросто можно что нибуть пожечь соскользнувшим щупом) Место накрутки временно изолируем парой листочков изоленты, проверяем, что авометр переключён на 10 А, а верхний шнур авометра воткнут в разъём 10А (на первом этапе ошибка чревата поджигом авометра, особенно если он стоит например на 20мА), и включаем усилитель в сеть. Авометр покажет потребляемый усилителем ток, который обычно на 90% включает ток выходного каскада.

На плате выходного каскада обычно стоят 2 подстроечных резистора (на канал) чуть чуть покрутив оба, определяемся какой резистор влияет на ток усилителя.

Читайте также:  Как настроить кардшаринг skyway

Выставляем ток усилителя по крайней мере миллиампер 100 ( 0,1 А) . Если больше — будет греться радиатор, если меньше, то ближе к классу В

Определившись с током надо выставить нулевое напряжение на выходе уся. Отсоединяем напаенные проводки от авометра, и пока скручиваем их между собой.

Дальше зависит, есть ли на выходе разделительный электролитический конденсатор.

Если акустика подключается прямо в цепь выходных транзисторов, то переключаем верхний проводок авометра из 10А в среднее гнездо, а переключатель авометра ставим на 20 В, и подключаем авометр вместо акустики. Сопли и ошибки недопустимы, можно пожечь деталюшки!

Включаем усилитель, и другим подстроечником добиваемся нулевого напряжения на выходе. На заключительном этапе можно переключатель авометра поставить на 2000мВ.

Отключаем авометр, подсоединяем акустику, переводим авометр в режим 10А (переключатель, и щуп!) и снова соединяем его в разрыв ранее скрученных проводков.

Подключаем акустику, подключаем источник аудио, включаем в сеть. Плавно повышая громкость, наблюдаем, что при тихих звуках ток не меняется, а при более громких может доходить до единиц Ампер.

Отключаем усь, отпаиваем ранее подпаянные проводочки и востанавливаем разорванную токовую цепь.

Не забываем возвратить авометр в исходное положение так как измерение токов до 10 А редкая процедура, вытаскиваем Щуп из гнезда авометра 10А.

Важное замечание: предохранители могут стоять в цепи переменного тока, тогда всё по другому. Надо найти провод, по которому проходит ток выходного каскада. и в разрыв этого провода включать амперметр. Скорее всего цепь питания подходит к корпусам выходных транзисторов, надо определить общий провод на два одинаковых транзистора одного канала.

Последний раз редактировалось теоретизирующий практик; 24.01.2013 в 18:32 .

Источник



AudioKiller’s site

Audio, Hi-Fi, Hi-End. Электроника. Аудио.

Материалы раздела:

Оптимальный ток покоя выходного каскада на полевых транзисторах в усилителях мощности

Интернет-версия статьи, опубликованной в журнале Радио 2016 №9

Выходной каскад усилителя – весьма нелинейный узел. И снижение его искажений очень хорошо отразится на работе усилителя и на его качестве звучания. Самые низкие искажения выходного каскада будут, конечно же, в классе А. Вот только греться выходные транзисторы при этом будут очень сильно. Чтобы снизить их нагрев обычно снижают напряжения питания. А это повышает искажения полевиков. И, главное, снижает максимальную выходную мощность усилителя. Значит появляется опасность возникновения клиппинга. То есть стремление улучшить звук, приводит к возможности его сильного ухудшения.

Что же делать? А нельзя ли найти такой ток покоя выходных полевых транзисторов, чтобы и искажения были маленькими, и нагрев небольшим?

Известный разработчик звуковой техники Дуглас Селф в книге «Проектирование усилителей мощности звуковой частоты» писал, что для низких искажений ток покоя выходного каскада на биполярных транзисторах должен быть как раз маленьким, выходные транзисторы должны работать в классе В. То есть греться минимально. Однако для выходных полевых транзисторов невозможно теоретически указать оптимальное значение тока покоя, при котором искажения выходных полевых транзисторов были бы минимальны.

Я усомнился в том, что оптимального тока покоя для полевых транзисторов не существует вообще. Какая-то оптимальная величина тока покоя, которую можно рекомендовать устанавливать в УМЗЧ, должна быть. Чтобы и качество высокое, и нагрев небольшой. Поэтому провел экспериментальную проверку влияния тока покоя выходного каскада на его искажения. Для этого я применил такую систему. Собрал высококачественный усилитель с полевыми транзисторами на выходе, по топологии Лина. Для того чтобы легче было измерять величину искажений, глубина общей ООС была уменьшена на 30 дБ. С целью линеаризации каскада усиления напряжения усилителя, вносящего наибольшие искажения, в него была введена местная ООС глубиной 12 дБ. Такая модернизация позволила более четко выделить искажения, вносимые выходным каскадом усилителя.

Итак, перед вами результаты реальных измерений на настоящем усилителе.

Цель оптимизации – получить достаточно низкие искажения, вносимые выходным каскадом при сравнительно небольшом токе покоя, а значит и нагреве выходных транзисторов.

С целью всестороннего изучения искажений, вносимых выходным каскадом, измерялись следующие виды искажений такого специализированного усилителя:

— коэффициент интермодуляционных искажений, использующий стандартный метод SMPTE с частотами 60 Гц и 7 кГц и соотношением амплитуд 4:1;

— коэффициент гармоник, нормированный к номеру гармоники k, вычисленный для первых одиннадцати гармоник:

Этот коэффициент используется сравнительно редко. Однако в нем есть необходимость, так как этот коэффициент учитывает не только величину гармоники, но и ее номер. Чем больше номер, тем больше коэффициент. Известно, что чем выше номер гармоники, тем более она заметна и неприятна на слух. В результате нормированный коэффициент гармоник не только вычисляет искажения, он позволяет учесть ширину спектра искажений и хоршо отображает «неприятное звучание» высших гармоник. Этот параметр гораздо сильнее связан с субъективным качеством звучания, чем «обычный» Кг. Но нормированный Кг непривычен — его практически не используют (потому что он более честно показывает искажения, а производители хотят красивых рекламных чисел). Поэтому для сравнения спектров вычислялся коэффициент, который можно назвать «фактор спектра» (ФС):

Читайте также:  Как настроить dhcp hyper v

Фактор спектра показывает ширину спектра искажений. Если в спектре присутствует только вторая гармоника, то ФС=1. Бо’льшие значения ФС соответствуют присутствию в спектре искажений большего числа высших гармоник. На рис. 1 показана зависимость фактора спектра от ширины спектра сигнала (график на рис. 1 построен по результатам проведенных измерений). Здесь показаны только первые одиннадцать гармоник, а вообще реальный спектр искажений при больших значениях фактора спектра содержал гармоники значительной амплитуды вплоть до двадцатой!

Для измерений использовалась звуковая карта EMU-0404 и последняя версия программы SpectraPLUS. Коэффициенты гармоник и интермодуляционных искажений вычислялись программой по встроенным алгоритмам. Нормированный коэффициент гармоник вычислялся на основе амплитуд гармоник, выдаваемых программой.

Исследовались наиболее популярные мощные комплементарные транзисторы, устанавливаемые в выходной каскад усилителя:

IRFP240/IRFP9240 фирмы International Rectifier;

2SJ201/2SK1530 фирмы Toshiba;

2SJ162/2SK1058 фирмы Hitachi.

Во всех случаях измерялись две-три пары однотипных транзисторов. Результаты не усреднялись, но разброс результатов для однотипных транзисторов был несущественным. В пары транзисторы не подбирались.

Измерения производились для двух типов нагрузки: активной, сопротивлением 6 ом и сложной комплексной, имитирующей реальные акустические системы.

Искажения выходных транзисторов на активной нагрузке показаны на рис. 2 — рис. 4.

Хорошо видно, что при увеличении тока покоя величина искажений, вносимых выходным каскадом, снижается. Вместе с искажениями снижается и значение фактора спектра. Это означает, что в спектре искажений снижается содержание гармоник высоких порядков, что положительно сказывается на звучании усилителя, воспринимаемом на слух. При условии, что выходной каскад остается работать в классе АВ, можно легко найти оптимальный ток покоя, при котором искажения невелики и при увеличении тока снижения искажений практически не происходит. Оптимальный ток получается равным 300 мА для транзисторов IR, 200 мА для транзисторов Toshiba и 120 мА для транзисторов Hitachi. Интересно, что последние транзисторы значительно отличаются по величине искажений. Надо сказать, что они отличаются и по работе на постоянном токе, для обеспечения работы этих транзисторов пришлось переделывать цепь смещения усилителя.

Искажения выходных транзисторов при работе на комплексную нагрузку показаны на рис. 5 — рис. 7.

Для комплексной нагрузки также характерно наличие оптимальной величины тока покоя, близкой по значениям к оптимальным величинам тока на активной нагрузке.

Интересно отметить, что при увеличении тока покоя выше оптимального значения, искажения выходного каскада в ряде случаев растут. Вполне возможно, что здесь проявляется влияние изменения крутизны выходного каскада, описанное Д. Селфом.

Важность параметра «фактор спектра» можно продемонстрировать на таком примере. На рис. 5 у транзистора Toshiba величины Кг и IMD при токах покоя 250 мА и 2000 мА практически равны. Из этого можно сделать вывод о том, что выходные транзисторы на этих токах работают совершенно одинаково. Однако значения фактора спектра для этих токов равны ФС(250 мА)=2,6 и ФС(2000 мА)=1,08. И спектры искажений в этих случаях разные. Они близки к спектрам, показанным на рис. 1 черным и синим графиками. Спектр искажений при токе покоя 250 мА содержит как минимум девять гармоник заметной амплитуды, тогда как спектр при токе 2000 мА содержит только вторую и третью гармоники.

Транзисторы разных производителей демонстрируют совершенно разное поведение. Это позволяет сделать вывод о том, что, несмотря на примерно одинаковые основные параметры транзисторов, их свойства сильно различаются. Однотипные транзисторы имеют очень близкие свойства. На рис. 8 показаны характеристики, измеренные на двух разных парах однотипных транзисторов. Различие лежит в пределах погрешности измерений.

Для более полного исследования и исключения случайности полученных результатов был проведен ряд дополнительных измерений. С целью их упрощения измерялся только коэффициент гармоник, который хорошо отражает нелинейность выходных транзисторов. Исследовались транзисторы 2SJ201/2SK1530 фирмы Toshiba. На рис. 9 показана зависимость Кг от тока покоя для различных значений сопротивления активной нагрузки. В целом зависимость сохраняется, и значение оптимального тока покоя можно считать неизменным.

На рис. 10 показана зависимость Кг от тока покоя на активной нагрузке для различных значений выходного напряжения. Графики пересекаются в одной точке: с одной стороны, чем меньше выходное напряжение, тем выше относительные искажения «ступенька» при малом токе покоя. Поэтому маленькое выходное напряжение дает большие искажения. Это при малом токе покоя. С другой стороны меньшее выходное напряжение создает меньшую нелинейность выходных транзисторов (у полевых транзисторов крутизна зависит от напряжения) и, следовательно, меньшие искажения при достаточно большом токе. И снова графики демонстрируют примерно то же значение оптимального тока покоя.

Две последние зависимости коэффициента гармоник от температуры выходных транзисторов и от частоты тестового тона (рис 10 и рис. 11) показывают, что ни один из этих факторов не влияет на поведение транзисторов. Так что полученные результаты (рис. 2 – рис. 7) верны при любых условиях работы усилителя.

Читайте также:  Как настроить устройство для умного дома яндекса

Если сравнить зависимости Кг от тока покоя, то можно заметить, что на всех графиках искажения достигают значения, равного примерно 0,25%, и дальше не уменьшаются. Это происходит потому, что величина искажений выходного каскада достигает и становится меньше величины искажений второго по уровню нелинейности узла усилителя – каскада усиления напряжения, который имеет Кг порядка 0,25%. Однако на правильность выводов данная ситуация не влияет:

1. Ищется не минимум искажений, а оптимум тока покоя. Как только искажения выходного каскада стали меньше, чем каскада усиления напряжения, то оптимум найден – главный вклад в искажения усилителя в целом вносит другой узел, следовательно, выходной каскад в дальнейшем совершенствовании не нуждается.

2. Каскад усиления напряжения дополнительно линеаризован на 12 дБ. Так что если искажения выходного каскада стали меньше чем у линеаризованного усилителя напряжения, то уж наверняка они будут гораздо меньше искажений «обычного». И их вклад в общие искажения усилителя будет весьма мал.

3. Тот факт, что при дальнейшем увеличении тока покоя сверх оптимального значения с выходным каскадом происходят какие-то изменения, показывает фактор спектра – при дальнейшем увеличении тока покоя спектр искажений сокращается. Возможно, что уменьшается и амплитуда искажений. Так что минимум искажений явно не достигнут, но однозначно достигнут оптимум тока покоя, когда искажения выходного каскада уже достаточно низкие, а нагрев выходных транзисторов небольшой.

В качестве иллюстрации оптимальности полученных значений можно привести результаты применения теории оптимизации к данной задаче. Целевая функция получается следующим образом. Имеются две переменные – ток покоя и коэффициент гармоник. Обе они проявляют свойство: чем меньше значение, тем лучше. Следовательно, переменные следует перемножать и искать минимум целевой функции. Поскольку величина Кг изменяется на порядок, а ток покоя на два порядка, то переменные следует привести к одному масштабу изменения, чтобы переменная, изменяющаяся сильнее, не «перетягивала» на себя результат. Для этого следует из величины тока покоя извлечь квадратный корень, что приведет диапазон ее изменения к диапазону изменения Кг. Таким образом получаем критерий оптимальности:

Результаты показаны на рис. 13, 14, 15. Они полностью согласуется с выводами, сделанными выше.

Выводы.

1. Искажения, вносимые выходным каскадом УМЗЧ, существенно зависят от тока покоя выходных полевых транзисторов.

2. Наименьшие искажения наблюдаются при работе в классе А, что полностью согласуется с теорией. В классе В искажения существенно выше, чем в классе АВ. С ростом тока покоя искажения в общем случае уменьшаются.

3. Существует оптимальное значение тока покоя, при котором искажения достаточно малы при работе транзисторов в классе АВ. В ряде случаев, при увеличении тока покоя выше оптимального значения, искажения выходного каскада растут.

4. Величина оптимального тока покоя для разных транзисторов лежит в диапазоне 150…300 мА, что намного больше тех значений, которые принято устанавливать в усилителях мощности. Обычно в усилителях устанавливают ток покоя 80…100 мА, а в некоторых промышленных конструкциях даже 40…60 мА.

5. Кроме амплитуды искажений, от тока покоя зависит и их спектр. При низких значениях тока покоя спектр гармоник значительно расширяется, а гармоники высоких порядков хуже подавляются отрицательной обратной связью. То есть при маленьком токе покоя у нас сразу две беды: большая величина Кг и широктй спектр искажений. Качество звучания наверняка будет невысоким. Спектр оптимального тока покоя содержит небольшое количество высших гармоник, которые эффективно подавляются общей ООС. Да и значение Кг невелико. Поэтому усилитель, ток покоя выходного каскада которого равен оптимальному, должен восприниматься на слух как хорошо звучащий.

6. Для транзисторов IRFP240/IRFP9240 оптимальный ток покоя составляет 300 мА. Для транзисторов 2SJ201/2SK1530 оптимальный ток покоя составляет 200…250 мА. Для транзисторов 2SJ162/2SK1058 оптимальный ток покоя составляет 120…150 мА.

7. Оптимальный ток покоя зависит только от типа выходных транзисторов. Другие факторы, такие как выходное напряжение или сопротивление нагрузки на его величину практически не влияют.

8. Самыми лучшими показали себя транзисторы 2SJ201/2SK1530 фирмы Toshiba. Транзисторы IRFP240/IRFP9240 фирмы International Rectifier заняли второе место. Они хоть и являются переключательными, тем не менее мало чем уступают транзисторам фирмы Toshiba. Транзисторы 2SJ162/2SK1058 фирмы Hitachi являются заметно нелинейными и не рекомендуются для высококачественного усиления. Оптимум тока покоя для них тоже получается каким-то расплывчатым.

9. При неоптимальном маленьком токе покоя (таком, какой часто устанавливают в усилителях) искажения, вносимые выходным каскадом, в четыре-шесть раз выше (а на слух — с учетом ширины спектра — в шесть-десять раз выше), чем при оптимальном. Поэтому для высококачественного усиления необходимо задавать ток покоя выходного каскада равным оптимальному.

Источник