Меню

Как подключить коллекторный двигатель к бесколлекторному регулятору

Регуляторы хода для бесколлекторных моторов

Вступление

Большинство применяемых в моделизме бесколлекторных моторов построены по принципу «вывернутого наизнанку» коллекторного двигателя: статор с обмотками неподвижен, а ротор с постоянными магнитами вращается. Количество обмоток – всегда три.

Основные характеристики контроллеров

«Кратковременный» ток способны держать выходные транзисторы контроллера, но рассеивать выделяемое при этом токе количество тепла контроллер не в состоянии.

Внутреннее сопротивление – полное сопротивление силовых ключей контроллера, без учета проводов. Чем мощнее контроллер, тем меньше его внутреннее сопротивление. Как правило, сопротивление проводов сравнимо с внутренним сопротивлением контроллера и вносит до 30% потерь. Для примера, внутреннее сопротивление контроллера Castle Creations Phoenix-25 13 mOhm, а сопротивление 30 см провода сечением 1кв.мм – 6 mOhm, то есть почти треть потерь приходится на провода.

Особенности подключения

При удлинении проводов от контроллера до батареи начинает сказываться их индуктивность, и может возникнуть ситуация, когда уровень помех по напряжению питания на входе контроллера станет настолько высок, что контроллер не сможет правильно определить положение ротора мотора (иногда при этом еще и «повисает» процессор контроллера). Известно несколько случаев полного «выгорания в дым» контроллеров, при удлинении проводов со стороны аккумулятора до 30см. Если необходимо увеличить длину проводов (например, двигатель стоит в хвосте модели), то надо увеличивать длину проводов от мотора до контроллера. Как правило, контроллеры поставляются с проводами до батареи длиной 13-16см. Такая длина вполне достаточна для надежной работы контроллера, и не следует ее увеличивать более чем на 5см.

Настройки

Практически все современные контроллеры имеют множество программных настроек. От них зависит режим работы, надежность, а иногда и работоспособность контроллера в паре с тем или иным мотором. Здесь мы попробуем перечислить основные настройки, и объяснить, как и на что они влияют.

Напряжение выключения мотора (cut-off voltage) – при каком минимальном напряжении на батарее мотор будет выключен. Эта функция предназначена для сохранения работоспособности аппаратуры при разряде батареи и для защиты самой батареи от переразряда (последнее особенно важно для литий- полимерных аккумуляторов). На некоторых контроллерах (например, Jeti серии “ Advansed ”) нет установки напряжения на конкретное число банок в случае использования литиевых батарей, количество банок при этом определяется автоматически.

При плавном выключении мотора контроллер сбрасывает обороты постепенно, не позволяя напряжению на батарее упасть ниже заданного, при этом контроль над моделью сохраняется до последнего.

Тормоз (brake) – торможение мотора после установки газа в «ноль». Может иметь значения включен/выключен, на некоторых контроллерах есть еще программируемая величина тормоза 50-100% и задержка включения тормоза после полного сброса газа. Это необходимо для защиты шестеренок редуктора в случае использования больших и тяжелых пропеллеров. В некоторых контроллерах, например том же Jeti серии «Advanced» тормоз и плавное выключения мотора – установки взаимоисключающие – для включения плавного отключения мотора надо выключить тормоз и наоборот. Намудрили чехи, однако.

Читайте также:  Как подключить клавиатуру к телевизору lg 42lf650v smart ем

Опережение (Timing) – параметр, от которого зависит мощность и КПД двигателя. Может находится в пределах от 0° до 30°. Физически это электрический угол опережения коммутации обмоток.

Время акселерации или задержка акселерации (acseleleration time или acseleration delay) – устанавливает время набора оборотов после старта до максимума. Устанавливается меньше для моторов с легкими пропеллерами без редукторов и больше для моторов с редукторами и в случае срабатывания защиты по току при резком прибавлении газа.

Также в некоторых контроллерах присутствует режим «гувернер» (governor), он предназначен для вертолетов, когда положению ручки газа соответствуют определенные обороты, а не мощность двигателя, контроллер в данном режиме работает как автоматическая система поддержания оборотов, прибавляя мощность при увеличении нагрузки на двигатель.

В некоторых контроллерах, например в Kontronik серии «Beat», нет отдельных настроек параметров, но есть выбор комплексных режимов – планер, самолет, корабль, вертолет и даже автомобиль с задним ходом!

Программирование

Возможные проблемы

О выключателях

Привлекает решение проблемы выключателей у контроллеров ТММ. У них каждая модель имеет версию с выключателем и без. Причем выключатель электронный, работает на размыкание, и если он в полете случайно оторвется (что вообще-то трудно себе представить) то контроллер и аппаратура останется включенной. Если контроллер ТММ забыть выключить, он при отсутствии сигнала с приемника начнет попискивать мотором. Подобная функция есть и у Astro Flight.

Про «выключатель» у контроллеров Jeti уже упоминалось в статье про литий- полимерные аккумуляторы, он выключает лишь питание приемника, контроллер при этом всегда включен. И не подает никаких сигналов об этом постепенно разряжая «в ноль» батарею, что для литиевых аккумуляторов заканчивается фатально.

Производители контроллеров

Лидером в производстве профессиональных контроллеров для спортсменов является, конечно же Schulze Electronik – на этих контроллерах летает, плавает и ездит большинство спортсменов. Однако это и самые дорогие контроллеры.

Далее в списке популярности стоит Castle Creations – сравнительно молодая фирма (основана в 1997г), специализирующаяся исключительно на выпуске регуляторов хода. В Америке она является лидером по количеству продаж.

Также профессиональные, но опять-таки довольно дорогие контроллеры для спортсменов делает немецкая фирма Kontronik.

Продукция чешских фирм MGM Compro (это их контроллеры называются TMM) и Jeti Models (они же делают контроллеры для фирмы Hacker motors) ориентирована в основном на рынок хобби.

Американская фирма Astro Flight, специализирующаяся на выпуске электромоторов для моделизма, также делает контроллеры к своим моторам, однако отдельно от моторов найти их в продаже проблемматично.

Заключение

Источник

Lialko-Valerij › Блог › UX-52 – Китайский регулятор оборотов. Обзор, тестирование, доработка.

Выписал данный регулятр с Али для своего коллекторного двигателя от стиральной машины (510 W при 15000 об/мин):

Читайте также:  Как подключить компьютерные наушники с микрофоном к телефону

По возможности полностью попытался разобраться с этим девайсом. По обзору в интернете народ в основном себе выписывает и использует вот такой регулятор:

Мой отличается от них не только ценой (мой 1004 руб. против 697 руб. в апреле 2019 г. на Али с бесплатной доставкой) но и наличием встроенного электронного тахометра с цифровым дисплеем. Внимательно изучив эту железяку пришел к выводу, что она предназначена изначально для регулировки оборотов асинхронного двигателя о чем и свидетельствует схема подключения на корпусе.
До сих пор я не сталкивался с тем, что регулировать обороты асинхронного двигателя можно не только частотником но и в принципе вот таким регулятором. С трудом нашел в интернете фото асинхронного движка с таходатчиком и видео, где человек подключает асинхронный электродвигатель с немыслимыми для меня и асинхронного электродвигателя 17500 об/мин. и таходатчиком на нем. yandex.ru/video/search?fi…%8C&noreask=1&path=wizard

Видимо для таких специальных электродвигателей к стиральным машинам изначально и был изготовлен регулятор UX-52. Потому как на мой взгляд нельзя регулировать обороты у классического асинхронного электродвигателя напряжением без последствий для него. Ну а для коллекторного регулировка этим UX-52 да и US-52 будет в самый раз.
Так как в наличии у меня такого движка нет провел опыт с подобным движком но без таходатчика.
Работает зараза, но даже с небольшим напряжением на входе двигатель набирает свои обороты, мощность при этом маленькая – можно остановить за шкив.
Уверенность в том что регулятор предназначен для асинхронных электродвигателей укрепилась также и в том, что встроенный конденсатор 12Мкф 470V как раз и нужен только для работы асинхронника. Да и схема подключения на самом регуляторе нарисована для работы асинхронного электродвигателя.
Встроенный тахометр рассчитан на максимальное число оборотов 5000, если поднимаешь выше то несет ерунду. Произвел замеры разных параметров данного регулятора при помощи моего коллекторного электродвигателя на холостом ходу и под нагрузкой – прижимал шкив дощечкой товодя потребляемый ток до 3А. Замерял обороты этим механическим прибором (погрешность 1%) и я ему верю:

Выводы: не стоит переплачивать за UX-52 так как встроенный цифровой тахометр показывает примерно в 1,5 раза меньше реальных оборотов. Вполне сойдет и US-52 без этой приблуды. Результаты испытаний и схемы:

Теперь о переделке регулятора для своего электродвигателя. Установленный в данном регуляторе динистор ВТ137 600Е на 8 ампер на явно маловатый радиатор долго не протянет и я выбросив громоздкий конденсатор на 12 Мкф изготовил самопальный радиатор и через пасту КПТ-8 закрепил на его месте на пластиковых стойках – корпус данного динистора с сетью не развязан.

Источник

Бесколлекторные моторы

Обзор бесколлекторных моторов для Arduino

Бесколлекторные моторы (рис. 1) появились сравнительно недавно и были созданы с целью оптимизации электродвигателей постоянного тока. Бесколлекторные моторы питаются трехфазным переменным током. Они эффективно работают в более широком диапазоне оборотов и имеют более высокий КПД. При этом конструкция двигателя проще, в ней нет щеточного узла, который постоянно трется с ротором и создает искры. Поэтому они практически не изнашиваются.

Читайте также:  Как подключить телевизор к монитору напрямую

По конструкции бесколлекторные моторы делятся на две группы: inrunner и outrunner. Двигатели inrunner имеют расположенные по внутренней поверхности корпуса обмотки, и вращающийся внутри магнитный ротор. Двигатели outrunner имеют неподвижные обмотки, внутри двигателя, вокруг которых вращается корпус с помещенными на его внутреннюю стенку постоянными магнитами.

Коммутация в бесколлекторном двигателе (БД) осуществляется и контролируется с помощью электроники.

Контроллеры бесколлекторных моторов (ESC регуляторы)

Рис. 3. ESC регуляторы

Задача контроллера состоит в том, что бы передать энергию постоянного тока от аккумулятора к трехфазному бесколлекторному мотору. Для передачи энергии контроллер использует MOSFETы — силовые ключи, которые могут открываться и закрываться за долю секунды. Если мощности одного ключа недостаточно, используется несколько ключей, включенных параллельно. Попеременное включение/выключение фаз поддерживает вращение мотора. За переключением фаз следит микроконтроллер регулятора. Функциональная схема ESC регулятора показана на рис. 4

Рис. 4. Функциональная схема ESC регулятора

Подключение к плате Arduino

Схема подключения бесколлекторного двигателя с ESC-регулятором к плате Arduino показана на рис.5. Для подключения регулятора к плате Arduino используется 2 провода:

Красный провод регулятора является не входом, выходом с напряжением +5В, который можно использовать для питания платы Arduino.

Показания потенциометра будем использовать для управления скоростью мотора.

Рис. 5. Подключение бесколлекторного двигателя с ESC-регулятором к плате Arduino

Для управления регулятором будем использовать Arduino-библиотеку Servo. Минимальные и максимальные значения управляющего сигнала 800 мксек и 2300 мксек.

Содержимое скетча представлено в листинге 1.

После загрузки скетча на плату Arduino видим что мотор не запускается и не реагирует на повороты потенциометра. Регулятор необходимо откалибровать, чтобы он знал минимальные и максимальное значения. Для этого перед подачей питания на регулятор, выставляем потенциометр в максимальное значение. Подаем питание. Слышим «пиканье» двигателя. Переводим потенциометр в минимальное значение, слышим 3 «пика». Регулятор откалиброван. Теперь поворотом потенциометра можем регулировать скорость двигателя.

Пример использования

В качестве примера настроим автоматическую калибровку ESC-регулятора при запуске скетча Arduino. Нам потребуются следующие компоненты:

Плата Arduino Uno – 1;

Плата прототипирования – 1;

Мотор бесколлекторный – 1;

Потенциометр 10 кОм – 1;

Блок питания 12 В – 1;

Для калибровки в процедуре setup() производим эмуляцию перевода потенциометра м максимальное и минимальное положение. Содержимое скетча показано в листинге 2.

После запуска Arduino в процедуре setup() происходит калибровка регулятора, и в процедуре loop() мотор крутится со скоростью, соответствующей положению потенциометра.

Часто задаваемые вопросы

1. Не запускаются моторы

Проверьте подключение моторов к ESC-регулятору, ESC-регулятора к блоку питания и Arduino.

Источник