Как подключить пьезоизлучатель к генератору

Как подключить пьезоизлучатель (пьезопищалку) к Arduino

Генерировать звуки с помощью Ардуино можно разными способами. Самый простой из них – подключить к плате пьезоизлучатель (или, как его ещё называют, «пьезопищалку»). Но как всегда, есть тут свои нюансы. В общем, давайте подключим к Arduino пьезопищалку и будем разбираться.

Инструкция по подключению пьезоизлучателя к Arduino

1 Схема подключения пьезоизлучателяк Arduino

Пьезоизлучатель, или пьезоэлектрический излучатель, или «пьезопищалка» – это электроакустическое устройство воспроизведения звука, использующие обратный пьезоэлектрический эффект. Принцип действия его основан на том, что под действием электрического поля возникает механическое движение мембраны, которое и вызывает слышимые нами звуковые волны. Обычно такие излучатели звука устанавливают в бытовую электронную аппаратуру в качестве звуковых сигнализаторов, в корпуса настольных персональных компьютеров, в телефоны, в игрушки, в громкоговорители и много куда ещё.

Пьезоизлучатель имеет 2 вывода, причём полярность имеет значение. Поэтому чёрный вывод подключаем к земле (GND), а красный – к любому цифровому пину с функцией ШИМ (PWM ). В данном примере положительный вывод излучателя подключён к выводу «D3».

Схема подключения пьезоизлучателя к Arduino и схема, собранная на макетной плате

2 Извлекаем звук из пьезоизлучателяс помощью функции analogWrite()

Пьезопищалку можно задействовать разными способами. Самый простой из них – это использовать функцию analogWrite(). Пример скетча – во врезке. Данный скетч попеременно включает и выключает звук с частотой 1 раз в 2 секунды.

Используя функцию analogWrite(), нельзя изменять тональность звука, к сожалению. Пьезоизлучатель всегда будет звучать на частоте примерно 980 Гц, что соответствует частоте работы выводов с широтно-импульсной модуляцией сигнала (ШИМ ) на платах Arduino UNO и подобных.

3 Извлекаем звук из пьезоизлучателяс помощью функции tone()

Но частоту звучания можно менять по-другому. Для этого извлечём звук из пьезоизлучателя посредством встроенной функции tone(). Пример простейшего скетча приведён на врезке.

Функция tone() принимает в качестве аргументов номер вывода Arduino и звуковую частоту. Нижний предел частоты – 31 Гц, верхний предел ограничен параметрами пьезоизлучателя и человеческого слуха. Чтобы выключить звук, посылаем в порт команду noTone().

Читайте также:  Как подключить селфи палку на андроид с проводом в настройках

А вот так будет выглядеть временная диаграмма сигнала, который генерирует функция tone(). Видно, что каждые 100 мс частота увеличивается, что мы и слышим:

Временная диаграмма сигнала функции tone()

Как видите, с помощью пьезоизлучателя из Ардуино можно извлекать звуки. Можно даже написать несложную музыкальную композицию, задав ноты соответствующими частотами, а также определив длительность звучания каждой ноты посредством функции delay().

Обратите внимание, что если к Ардуино подключены несколько пьезоизлучателей, то единовременно будет работать только один. Чтобы включить излучатель на другом выводе, нужно прервать звук на текущем, вызвав функцию noTone().

Важный момент: функция tone() накладывается на ШИМ сигнал на «3» и «11» выводах Arduino. Т.е., вызванная, например, для пина «5», функция tone() может мешать работе выводов «3» и «11». Имейте это в виду, когда будете проектировать свои устройства.

Источник

Подключение пьезоизлучателя к Ардуино

Пьезодинамик (зуммер) Ардуино ► продолжим изучение Arduino с помощью простых схем. Соберем электрическую схему с пьезодинамиком Ардуино на макетной плате.

Подключить пьезо пищалку к Arduino можно несколькими способами. На этом занятии продолжим изучение микроконтроллера Arduino на простых примерах. Соберем электрическую схему с пьезодинамиком (зуммером) на макетной плате. Рассмотрим устройство пьезоизлучателей, назначение процедуры void setup () и void loop (), а также свойство функции tone () в языке программирования Arduino IDE.

Устройство пьезоизлучателя (пьезодинамика)

Благодаря низкой стоимости и малого потребления энергии, по сравнению с динамиками, пьезокерамические излучатели звука (пьезодинамики) — акустические устройства для воспроизведения звука, использующие пьезоэлектрический эффект. Пьезоизлучатели получили широкое распространение: их используют в различных устройствах — будильниках, телефонах, игрушках и в другой технике.

Фото. Устройство пьезоизлучателя (пьезопищалки) и динамика

По сравнению с традиционными электромагнитными преобразователями звука, пьезоизлучатели имеют простую конструкцию. Пьезокерамический излучатель состоит из металлической пластины, на которую нанесена пьезоэлектрическая керамика, имеющая токопроводящее напыление. Пластина и напыление являются контактами пьезоизлучателя (буззера), при этом устройство имеет полярность — плюс и минус.

Принцип действия излучателей основан на эффекте, открытом братьями Кюри в 1880 г. В пьезокристаллах под действием механических сил на сдвиг, изгиб или кручение образуются электрические заряды. Кроме «прямого» эффекта существует и обратный эффект — если подать электричество на кристалл, то он начнет деформироваться. При частых колебаниях кристалла создается звуковая волна с заданной частотой.

Подключение пьезоизлучателя к Ардуино

Для этого занятия нам потребуется:

Скетч включения пьезодинамика функцией tone

Пояснения к коду:

Скетч плавного изменения частоты зуммера

Пояснения к коду:

Заключение. Мы рассмотрели, как включить пьезодинамик (пищалку) от Ардуино. Данная информация пригодится при создании проектов, в которых требуется звуковой сигнал при включении устройства на плате Arduino или при других случаях. Для уменьшения громкости сигнала активного пьезодинамика Ардуино можно использовать резисторы с разным номиналом, включая их в электрическую цепь.

Читайте также:  Как подключить двд на shivaki

Источник

Простая схема увеличения акустического выхода пьезоэлектрического преобразователя

Knowles SPW2430HR5H-B

Для увеличения акустической мощности пьезодинамика или ультразвукового преобразователя было предложено много разных идей. Большинство из них основано на довольно сложных схемах, увеличивающих общую стоимость решения; например, повышение низкого напряжения питания логики до более высокого напряжения или использование H-моста.

Напротив, в этой статье показано, как можно увеличить акустическую мощность пьезоэлектрического преобразователя, минимизировав количество деталей и стоимость. Прежде чем мы приступим к обсуждению нового подхода, давайте рассмотрим некоторые из наиболее часто используемых пьезоакустических схем и их недостатки.

Простейшая схема драйвера пьезоэлемента состоит из преобразователя и ключевого транзистора (Рисунок 1). Напряжение на преобразователе не может быть больше напряжения источника питания, которое и определяет верхний предел акустической мощности. Резистор R2 служит для разряда емкости преобразователя. Постоянная времени RC должна быть короткой относительно периода резонансной частоты преобразователя. Низкие сопротивления резисторов снижают электрический КПД при гашении механического (акустического) резонанса преобразователя, что, конечно, снижает акустическую эффективность.

Рисунок 1. Хотя такая схема управления пьезоизлучателем проста,
она очень неэффективна.

Самым распространенным способом усовершенствования является замена R2 дросселем, как показано на Рисунке 2.

Рисунок 2. Замена резистора R2 дросселем увеличивает
акустическую мощность и КПД.

Величину индуктивности часто выбирают такой, чтобы получить электрический резонанс с емкостью преобразователя (излучателя) при акустическом резонансе преобразователя. Этот подход может обеспечить более высокую акустическую мощность, чем параллельный резистор, однако он оставляет еще множество возможностей для улучшения. В лучшем случае пиковое напряжение на преобразователе может достигать 40 В, тогда как более типичное значение при напряжении питания 5 В составляет 20 В.

Это связано с тем, что переход коллектор-база транзистора смещен в прямом направлении во время отрицательной полуволны напряжения на параллельном резонансном контуре, образованном индуктивностью и емкостью преобразователя, что ограничивает размах напряжения, уменьшая акустический выход.

Рисунок 3. Использование диода может устранить
​отрицательные выбросы.

Добавление диода изолирует переход коллектор эмиттер (или, если используется MOSFET, переход паразитного диода) от этой отрицательной полуволны, обеспечивая намного больший размах напряжения на преобразователе и увеличивая акустическую мощность (Рисунок 3). Хотя прямое напряжение диода снижает приложенное напряжение питания, повышенное напряжение при резонансе более чем компенсирует эту небольшую потерю.

Читайте также:  Как подключить песню на билайне

Чтобы добиться каких-либо дальнейших улучшений, мы должны учесть, что на самом деле в этой небольшой системе существуют два резонанса:

Частота электрического резонанса не обязательно должна совпадать с частотой акустического резонанса. На самом деле, если она примерно в 2 раза больше, чем частота акустического резонанса, пиковое напряжение на преобразователе может быть значительно увеличено.

Рисунок 4. Иллюстрация поведения схемы в реальных условиях.

Это иллюстрируется Рисунком 4, где осциллограммы получены при следующих параметрах схемы:

Обратите внимание, что пункт 5 обозначает потенциальную проблему, скрывающуюся в этом новом решении, которую необходимо устранить. Если источник сигнала может включать транзистор после того, как напряжение преобразователя становится положительным, будет происходить мощный короткий выброс тока, который способен снизить электрический КПД и потенциально со временем разрушить транзистор. Увеличение коэффициента заполнения, чтобы транзистор включался, когда резонансное напряжение слегка отрицательное, позволяет устранить этот выброс.

После того, как мы все обсудили, давайте посмотрим, как наша схема ведет себя в реальной жизни, используя для этого удобный четырехканальный интеллектуальный осциллограф:

Высокое пиковое напряжение на преобразователе достигается за счет использования дросселя с индуктивностью меньшей, чем требуется для резонанса на частоте 40 кГц, что позволяет току возрастать примерно в два раза быстрее. В рассматриваемом примере это обеспечивает удвоенный ток для «зарядки» магнитного поля дросселя.

В данной системе это приводит к большему смещению поверхности преобразователя, и, соответственно, увеличивает акустическую мощность.

Эту статью не следует рассматривать как исчерпывающий трактат по резонансным схемам. Она просто демонстрирует процедуру, позволяющую с помощью очень простой и недорогой схемы увеличить акустическую мощность любого резонансного пьезоэлектрического преобразователя или излучателя.

Кратко эту процедуру можно изложить следующим образом:

Смоделировать представленную здесь акустическую/ электрическую схему в симуляторе может быть непросто, поскольку преобразователь содержит два или более потенциально резонансных элемента. К ним относятся механически резонанс преобразовательного элемента, акустический резонанс корпуса преобразователя (называемый резонансом Гельмгольца) и, конечно же, электрический резонанс емкости преобразователя с внешней индуктивностью.

Акустическая нагрузка излучением из порта преобразователя или его диафрагмы добавляет еще одну сложность к моделированию. Простое электрическое моделирование этой схемы дает на преобразователе 240 В пик-пик, что больше удвоенного напряжения, полученного в реальной схеме. Причиной большей части потерь, снижающих пиковое напряжение преобразователя в этой системе по сравнению с моделируемыми результатами, может быть акустическая нагрузка.

С помощью этой простой процедуры можно с минимальными затратами времени и сил легко добиться максимальной акустической мощности преобразователя.

Источник

Поделиться с друзьями
Adblock
detector