Меню

Как правильно настроить гистерезис

Как правильно настроить гистерезис

Что такое гистерезис в температурах и давлениях?

Гистере́зис (в переводе с греческого — отстающий) — свойство систем (физических, логических, биологических и т. д.), мгновенный отклик которых на приложенные к ним воздействия зависит в том числе и от их текущего состояния, а поведение системы на интервале времени во многом определяется её предысторией.

Многие устройства по регулировке и контролю температуры систем отопления имеют настройку не только температуры, но и обязательную настройку гистерезиса, которая позволяет уменьшить количество переключения в единицу времени между двумя положениями: Вкл / Выкл. Гистерезис также позволяет повысить точность регулировки температуры уменьшением гистерезиса.

На сегодняшний день в основном существует только дуальный гистерезис, имеющий только два положения.

К примеру, мы рассмотрим два варианта:

1. Температурный гистерезис – для логики темростатов

2. Гистерезис давления – реле включения / отключения насосов

Как известно у них имеется только два варианта: Вкл / Выкл.

Данное понятие можно разделить на две составляющее:

1. Обозначить этим термином само явление, что существует гистерезис. Например, что данная система обладает гистерезисом.

2. Обозначить значение гистерезиса. Например, сказать, что гистерезис равен 2 градусам.

Исходя из этого

Гистерезисом называется или величина, при котором сигнал меняется на противоположный сигнал. Или сам эффект при котором, действие переключения на противоположный сигнал осуществляется с некоторой задержкой по величине влияния. (Например, при достижение нормы температуры и превышение этой нормы сигнал изменится не сразу, а по достижению той самой величины гистерезиса).

График температурного гистерезиса

Пример для термостата

Термостат настроен на 25 градусов с гистерезисом 2 градуса.

Предположим что температура помещения 20 градусов. Когда температура достигнет 27 градусов термостат переходит в положение отключения. После этого температура помещения будет падать. Когда температура достигнет 23 градусов, то термостат переходит в положение включения. Цикл замыкается.

Пример для реле давления

Реле настроено на два порога: Порог включения 1,2 Bar, порог отключения 3 Bar

Гистерезис при этом будет равен 0,9 Bar. (3-1,2)/2=0,9

Когда давление составляет 1 Bar, реле замыкает контакт. Когда давление достигает 3 Bar, реле размыкает контакт. Когда давление достигает 1,2 Bar, реле вновь замыкает контакт. Цикл повторяется.

Вот собственно так и нужно понимать логику гистерезиса.

Если бы давление включение и отключения имели одно значение, то гистерезиса бы не было. То есть если порог включения равен порогу отключения, то в такой системе отсутствует гистерезис.

А поскольку комнатные термостаты обладают разными порогами включения и отключения, то такая система обладает гистерезисом. Гистерезис в свою очередь позволяет реже производить переключение между двумя положениями: Вкл / Выкл. Но чем больше гистерезис, тем выше скачкообразное изменение температуры.

Существуют другие графики гистерезисов. Например, магнитный гистерезис

Источник

Что такое гистерезис в электротехнике и электронике?

Некоторые физические и другие системы с запаздыванием отвечают на различные воздействия, приложенные к ним. При этом отклик на воздействие во многом зависит от текущего состояния системы и определяется предысторией настоящего состояния. Для описания таких явлений применяется термин – гистерезис, что в переводе с греческого означает отставание.

Что такое гистерезис?

Говоря простым и понятным языком – гистерезис это ответная, запоздалая реакция некой системы на определённый раздражитель (воздействие). При устранении причины, вызвавшей ответную реакцию системы, либо в результате противоположного действия, она полностью или частично возвращается к первоначальному состоянию. Причём для такого явления характерно то, что поведение системы между крайними состояниями не одинаково. То есть: характеристики перехода от первоначального состояния и обратно – сильно отличаются.

Явление гистерезиса наблюдается:

  • в физике;
  • электротехнике и радиоэлектронике;
  • биологии;
  • геологии;
  • гидрологии;
  • экономике;
  • социологии.
Читайте также:  Как настроить слоты в wot

Гистерезис может иметь как полезное, так и пагубное влияние на происходящие процессы. Это отчётливо просматривается в электротехнике и электронике, о чём речь пойдёт ниже.

Динамический гистерезис

Рассмотрим явление запаздывания ответной реакции во времени на примере механической деформации. Предположим у нас есть металлический стержень, обладающий упругой деформацией. Приложим к одному концу стержня силу, направленную в сторону другого конца, который покоится на опоре. Например, поставим стержень под пресс.

По мере возрастания давления, тело будет сжиматься. В зависимости от механических характеристик металла, реакция стержня на приложенную силу (напряжение) будет проявляться по-разному: вначале сила упругости постепенно будет возрастать, потом она резко устремится к пороговому значению. Достигнув порогового значения, сила упругого напряжения уже не сможет противодействовать возрастающему нагружению.

Если увеличивать силу давления, то в стержне произойдут необратимые изменения – он, либо изменит свою форму, либо разрушится. Но мы не будем доводить наш эксперимент до такого состояния. Начнём уменьшать силу давления. Реакция напряжения при этом будет меняться зеркально: вначале резко понизится, потом постепенно будет стремиться к нулю, по мере разгрузки.

Отставание процесса развития деформации во времени, под действием приложенного механического напряжения вследствие упругого гистерезиса описывается динамической петлей (см. рис. 2). Явление обусловлено особенностями перемещений дислокаций микрочастиц вещества.

Различают упругий гистерезис двух видов:

  1. Динамический, при котором напряжения изменяются циклически, а максимальная амплитуда напряжений не достигает пределов упругости.
  2. Статический, характерный для вязкоупругих или неупругих деформаций. При таких деформациях полностью, либо частично исчезают напряжения при снятии нагрузки.

Причиной динамического гистерезиса являются также силы термоупругости и магнитоупругости.

Петля гистерезиса

Кривая, характеризующая ход зависимости ответной реакции системы от приложенного воздействия называется петлёй гистерезиса (показана на рис. 1).

Рис. 1. Петля гистерезиса

Все петли, характеризующие циклический гистерезис, состоят из одной или нескольких замкнутых линий различной формы. Если после завершения цикла система не возвращается в первоначальное состояние, (например, при вязкоупругой деформации), то динамическая петля имеет вид кривой, показанной на рисунке 2.

Рис. 2. Динамическая петля

Анализ гистерезисных петель позволяет очень точно определить поведение системы в результате внешнего воздействия на неё.

Гистерезис в электротехнике

Важными характеристиками сердечников электромагнитов и других электрических машин являются параметры намагничивания ферромагнитных материалов, из которых они изготавливаются. Исследовать эти материалы помогают петли ферромагнетиков. В данном случае прослеживается нелинейная зависимость внутренней магнитной индукции от величины внешних магнитных полей.

На процесс намагничивания (перемагничивания) влияет предыдущее состояние ферромагнетика. Кроме того, кривая намагничивания зависит от типа ферромагнитного образца, из которого состоит сердечник.

Если по катушке с сердечником циркулирует переменный ток, то намагничивания образца приводит к отставанию намагничивания. В результате намагничивания сердечника происходит сдвиг фаз в цепи с индуктивной нагрузкой. Ширина петли гистерезиса при этом зависит от гистерезисных свойств ферромагнетиков, применяемых в сердечнике.

Это объясняется тем, что при изменении полярности тока, ферромагнетик какое-то время сохраняет приобретённую ориентацию полюсов. Для переориентации этих полюсов требуется время и дополнительная энергия, которая израсходуется на нагревание вещества, что приводит к гистерезисным потерям. По величине потерь материалы подразделяются на магнитомягкие и магнитотвёрдые (см. рис. 3).

Рис. 3. Классификация магнитных материалов

Магнитный гистерезис в ферромагнетиках отображает зависимость вектора намагничивания от напряженности электрического поля (см. Рис. 3). Но не только изменение поля по знаку вызывает гистерезис. Вращение поля или (что, то же самое) магнитного образца, также сдвигает временные характеристики намагничивания.

Читайте также:  Как настроить линзу птф

Рис. 4. Петли гистерезиса под действием изменения напряжённости поля

Обратите внимание, что на рисунке изображены двойные петли. Такие петли характерны для магнитного гистерезиса.

В однодоменных ферромагнетиках, которые состоят из очень маленьких частиц, образование доменов не поддерживается (не выгодно с точки зрения энергетических затрат). В таких образцах могут происходить только процессы магнитного вращения.

Рис. 5. Механизм возникновения петли магнитного гистерезиса

В электротехнике гистерезисные свойства используются довольно часто:

  • в работе электромагнитных реле;
  • в конструкциях коммутационных приборов;
  • при создании электромоторов и других силовых механизмов.

Явления диэлектрического гистерезиса

У диэлектриков отсутствуют свободные заряды. Электроны тесно связаны со своими атомами и не могут перемещаться. Другими словами, у диэлектриков спонтанная поляризация. Такие вещества называются сегнетоэлектриками.

Однако под действием электрического поля заряды в диэлектриках поляризуются, то есть изменяют ориентацию в противоположные стороны. С увеличением напряжённости поля абсолютная величина вектора поляризации возрастает по нелинейному принципу. В определённый момент поляризация достигает насыщённости, что вызывает эффект диэлектрического гистерезиса.

На изменение поляризации уходит часть энергии, в виде диэлектрических потерь.

Гистерезис в электронике

При срабатывании различных пороговых элементов, часто применяемых в электронных устройствах, требуется задержка во времени. Например, гистерезис используется в компаратороах или триггерах Шмидта с целью стабилизации работы устройств, которые могут срабатывать в результате помех или случайных всплесков напряжения. Задержка по времени исключает случайные отключения электронных узлов.

На таком принципе работает электронный термостат. При достижении заданного уровня температуры устройство срабатывает. Если бы не было эффекта задерживания, частота срабатываний оказалась бы неоправданно высокой. Изменение температуры на доли градуса приводило бы к отключению термостата.

На практике часто разница в несколько градусов не имеет особого значения. Используя устройства, обладающего тепловым гистерезисом, позволяет оптимизировать процесс поддержания рабочей температуры.

Источник

Настройка гистерезиса

Гистерезис для всех блоков Кситал составляет 1 o С.

Это значение оптимально практически для всех применений. В случае особой необходимости его можно изменить.

Нижеприведенные рекомендации не актуальны для старых блоков, которые не реагируют на SMS-команды запроса и изменения констант в энергонезависимой памяти блока.

Когда Вы задаете термостату температуру поддержания, например, +23 o С, то при заводских значениях гистерезиса, управляющее реле будет включаться на 22,5 o С и отключаться на 23,5 o С, поддерживая тем самым температуру 23 o С±0,5 o С. Это оптимальная настройка для поддержания температуры воздуха.

Если Вам нужно, чтобы температура поддерживалась в других пределах или управляющее реле более редко включало и выключало бы отопитель, Вы можете подстроить гистерезис выбранного термостата.

Все буквы в командах — английские.

«пароль» в командах это актуальный пароль в системе. Значение по умолчанию 00000.

в командах это адрес константы половины гистерезиса нужного термостата:

  • 03D — адрес константы значения половины гистерезиса для реле №1 в полуградусах
  • 03E — адрес константы значения половины гистерезиса для реле №2 в полуградусах
  • 03F — адрес константы значения половины гистерезиса для реле №3 в полуградусах

Значения констант по умолчанию равны «01», т.е. половина гистерезиса равна 0,5 o С, а полный гистерезис каждого термостата равен 1 o С.

Чтобы подстроить гистерезис выбранного термостата

Узнайте текущее значение половины гистерезиса SMS-командой с телефона 00SMS:

Получите ответ типа:

Задайте новое значение половины гистерезиса в диапазоне 0,5 o С. 40 o С, что соответствует диапазону значений констант 01. 50 с помощью SMS-команды с телефона 00SMS:

Читайте также:  Как настроить музыкальный усилитель

Получите подтверждение типа:

Пример:

Необходимо, чтобы реле №2 включалось при +30 o С, а выключалось при +50 o С. В системе используется пароль по умолчанию.

Т.к. средняя температура между +30 o С и +50 o С равна +40 o С, то отправляем команду задания среднего порога регулирования для реле №2:

Т.к. половина гистерезиса (отклонение в одну сторону от порога регулирования) составляет 10 o С (в полуградусах это «20», а в шестнадцатеричном виде «14»), то отправляем команду:

Гистерезис беспроводных блоков расширения

Гистерезис для беспроводных блоков расширения Кситал составляет 1 o С, изменить его нельзя.

Источник



Скрытые параметры комнатных терморегуляторов.

Человек ощущает себя комфортно в довольно таки узком диапазоне температур. 22 градуса может казаться жарко, а 21 градус — прохладно. Но мало какие терморегуляторы могут обеспечить такую точность. Рассмотрим ключевые параметры имеющихся в продаже комнатных терморегуляторов.

Казалось бы, на терморегуляторе устанавливается значение температуры — о чем ещё можно говорить?

Но для того чтобы не возникал дребезг (бесконечное дергание в виде кратковременных включений/выключений) должен быть гистерезис.

Но есть еще несколько скрытых параметров.

Технические параметры терморегуляторов рассматривал в статье «Какие бывают терморегуляторы».

Здесь остановлюсь на неочевидных параметрах логики работы комнатных терморегуляторов, таких как:

  1. Гистерезис (диапазон).
  2. Шаг установки (точность регулирования).
  3. Погрешность (точность измерения).

Гистерезис (диапазон) терморегулятора.

Что такое гистерезис понятно — разница между точкой включения и точкой выключения.

То-есть в логике работы терморегулятора задается две температуры: установленная температура, и температура, вычисленная из установленной арифметическими действиями с гистерезисом.

Терморегулятор поддерживает не установленную температуру, а диапазон температур, шириной в гистерезис.

Существуют и терморегуляторы с явным заданием точки включения и точки выключения. Это обычно дешёвые терморегуляторы в форм-факторе не для комнатной установки:

Гистерезис заявлен в руководстве по эксплуатации, и даже в разделе product info для терморегуляторов на AliExpress можно прочитать этот параметр.

Обычно он не бывает меньше 0.5, а часто вообще равен 1.

Гистерезис в 1 градус — это много.

Ещё стоит обратить внимание на то — чем является установленная на терморегуляторе температура.

Это может быть как точка включения — нижняя граница диапазона, так и точка выключения — верхняя граница диапазона.

Шаг установки (точность регулирования) терморегулятора.

А вот это уже скрытый и нигде не декларируемых параметр.

Задание установленной температуры кнопками +/- осуществляется с определенным шагом.

И если в приведённом выше примере дешевого терморегулятора шаг установки температур составляет 0,1 градус, то для комнатных терморегуляторов шаг установки не менее 0,5 градусов.

В большинстве же терморегуляторов шаг установки вообще 1 градус.

Погрешность (точность измерения) терморегулятора.

При преобразовании измеренной температуры в цифровое значение происходит отбрасывание знаков после запятой с понижением точности.

Точность более 0,1 очевидно что не нужна.

Часто в комнатных терморегуляторах выбрана точность 0,5.

Но точность 1 кажется слишком грубой.

Тем не менее встречаются терморегуляторы, у которых не отображаются вообще знаки после запятой.

Ещё заметил что у некоторых терморегуляторов точность значения температуры, участвующего в вычислениях, и точность отображаемого значения различаются.

Самая плохая логика работы терморегулятора.

Этот терморегулятор вообще оперирует только целочисленными значениями: гистерезис, шаг установки. значение температуры — все с точностью 1 градус.

Реальный диапазон поддерживаемой температуры получается 2-3 градуса.

Источник